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1 INTRODUCTION  

Saving resources is a crucial objective in the 21st century and is motivating intensive work in various 

research fields such as renewable energy, hybrid (or fully electric) vehicles or smart electrical grid. 

Lightweight design is another example that is particularly important for the automotive sector and can 

be achieved by different approaches: Decreasing the volume of specific parts (key components) or 

increasing the functional density per part are only two possibilities (Mallick, 2010). However, these 

lightweight approaches place new demands on key components which have to operate at their limiting 

capability due to increased loads and/or stresses. For example, the synchronizer rings in vehicle 

transmission units which feature precisely arranged gear teeth are in general made of brass. But to 

cope with higher loads they should in future be made of steel to benefit from higher strength and 

improved wear resistance (Song, 2008). In many cases current production processes are only able to 

deliver these new high performance components by means of many different sub-process steps and 

thus at high costs (Merklein, 2011). This motivates the research for new forming processes to produce 

high quality sheet metal components with heavily loaded functional elements. One possibility is to 

apply bulk forming operations to sheet metals which has led to a new class of forming processes with 

the overall designation sheet-bulk metal forming (SBMF) (Merklein, 2012). Exemplary sheet-bulk 

metal parts with different design features are depicted in Figure 1. Breitsprecher and Wartzack (2013) 

have described a detailed classification system for those features. 

 

Figure 1: Sheet-bulk metal formed parts from manufacturing experiment. The overall 
research goal is an automatic acquisition of design-relevant manufacturing knowledge. 

In order to establish this new technology the potential of SBMF from the engineering design point of 

view has to be revealed. Most of this potential resides in a broadened design space for secondary 

design features (teeth, engaging pieces, locking elements). However, in the sense of integrated product 

development, e. g. according to Andreasen (1987) and Ehrlenspiel and Meerkamm (2013), this 

requires an early acquisition of design-relevant manufacturing-related knowledge and implementation 

within the engineering design process. Furthermore, this knowledge has to be updated by the time the 

forming process evolves. 
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This objective is pursued through the development of the Self-Learning Engineering Assistance 

System referred to as SLASSY that supports the design engineer during the design process of sheet-

bulk metal formed parts. For details please refer to Section 2.2 and to Breitsprecher (2012). In the 

current development stage SLASSY offers the design engineer assistance through a knowledge-based 

analysis (in accordance to Weber (2005)) of sheet-metal parts regarding manufacturing process related 

parameters.  

The very next step is done with this contribution as seen in Figure 1. Our objective is to enable a 

knowledge-based synthesis of SBMF-parts. Why this objective calls for a multi-objective optimization 

(MOOP) and how such an optimization approach can be realized is shown in this contribution. 

The paper starts with a brief description of sheet-bulk metal forming and how manufacturability can be 

expressed for that process. Furthermore, well-known works regarding (multi-objective) optimization 

in the field of engineering design are highlighted (Chapter 2). The optimization procedure which bases 

on the utilization of metamodels derived from the KDD-process and evolutionary optimization 

algorithm is shown in Chapter 3. Our use case shows the application of MOOP for a specific sheet-

bulk metal formed part (Chapter 4) before the paper is concluded in Chapter 5. 

2 BACKGROUND AND RELATED WORK 

2.1 Design-for-manufacture in sheet-bulk metal forming 

The manufacturing technology sheet–bulk metal forming (SBMF) is being developed within the 

transregional collaborative research centre 73 (SFB/TR 73), funded by the German Research 

Foundation (DFG). This technology will unite the advantages of sheet and bulk metal forming 

processes to manufacture geometrically complex parts with variants and functional elements from thin 

sheet metal through forming. The objective is to manufacture these high–precision elements with close 

geometrical tolerances in which the geometrical details of the variants are in the range of the sheet 

thickness. The variants to manufacture are carriers and gearings derived from synchronizer rings and 

seat slide adjusters. The manufacturing of such variants out of sheet metals requires the overlapping or 

the sequence of two– and three–axis strain and stress states. To realize this, various sheet and bulk 

metal forming processes have to be combined (Merklein, 2012). For the development of SBMF 

processes, the process combinations “deep drawing – upsetting “, “deep drawing – extrusion“ and 

“cutting – deep drawing” will be investigated within SFB/TR 73. Exemplary SMBF-parts are shown 

in Figure 1.  

The process engineers use and combine different methods to develop their manufacturing technology, 

for example forming experiments (Merklein, 2014), finite element process simulations (Schneider, 

2011) and design of experiments (Fisher, 1995). The result of a SBMF process is acceptable, i.e. the 

SBMF part is manufacturable, if certain process parameters do not exceed upper and/or lower bounds. 

Depending on the part (see Figure 1) and the process, different parameters can be defined. The 

following list is a qualitative selection. Distinct values cannot be named since they depend inter alia on 

the forming machines, materials and the design features. 

 forming force 𝐹𝑓  [𝑘𝑁]: A forming force (mostly axial) is necessary to induce sufficient stress 

within the material and allow two- and three-dimensional strain rates. Depending on available 

forming machines a maximum value cannot be exceeded. 

 horizontal loads 𝐹ℎ [𝑘𝑁] on the forming punch: In case of non-symmetrical sheet-metal parts, the 

vertical forming force will induce horizontal forces on the forming punch which lead to a lateral 

shift of the punch resulting in geometric errors of the formed part. A maximum value is not to be 

exceeded. 

 total equivalent plastic strain φ [–]: It measures the increase of dislocation density and the mutual 

hindering of dislocation, that is, the increase of flow stress. If it exceeds a material specific value 

the part fails during manufacturing or operation, e.g. due to micro cracks. 

 contact ratio c / mould filling volume V [%]: The specific function of a part (e.g. torque 

transmission) is fulfilled, if the functional features (e.g. teeth of a gear) are shaped correctly. For 

forming processes this can only be achieved if the material flows into the mould and fills it as 

much as possible. A contact ratio of 1.0 indicates that the whole mould surface is in contact with 

flown material, that is the process engineer strives for that value. 
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 sheet thickness reduction 𝑡∆ [𝑚𝑚]: The necessary material flow and the inevitable volume 

constancy cause a local thinning of the sheet-metal. A maximum value 𝑡∆,𝑚𝑎𝑥 shall not be 

exceeded or the part will fail during operations. 

Notice that each part from Figure 1 is assigned to different process parameters. The deep-drawn cup 

(lower right corner in Figure 1) will be evaluated, e.g. by checking 𝐹𝑓 , φ and 𝑡∆, whereas the plate in 

the upper left corner is evaluated with 𝐹𝑓 , φ and c (Figure 2 as an example). However, these are 

general discussions and specific values have to be assigned through discussion between the process 

and the design engineer. Both can influence each process parameter with specific attributes. The 

manufacturing engineers may use different extrusion oils to influence the tribological boundary 

conditions during the forming process. Also the usage of deep-drawing dies with different inlet 

geometries has a high influence on the forming force (Schneider, 2011) and the number of die 

reinforcements is often increased for more allowable forming cycles. On the other hand design 

engineers change the geometry of the SMBF part (synthesis step) to ensure the fulfilment of a specific 

function, e.g. the geometry of locking teeth similar to a synchronizer ring (see Figure 2). SLASSY 

predicts the process parameter based on the geometry parameters and the mentioned metamodels 

(analysis step). Figure 2 shows how process parameters change according to different geometries. 

 

Figure 2: Different variants of sheet-bulk metal formed parts with predicted corresponding 
process parameters. The cube represents the knowledge base that has been derived via 

the KDD-based self-learning process. 

Now the question is: How does a design look that meets the design-for-manufacture requirements? 

This is a "classical" optimization problem: For a given function 𝑓: 𝛺 → 𝑅 from a set Ω we wish to find 

at least one element 𝑥0 for which we can state 𝑓(𝑥0) ≤  𝑓(𝑥) ∀ 𝑥 ∈  𝛺 or  𝑓(𝑥0) ≥  𝑓(𝑥) ∀ 𝑥 ∈  𝛺, 

that is, we seek for minimization or maximization, respectively. From the SBMF perspective each 𝑥 

represents a specific forming process configuration (lubrication concept, inlet geometry, reinforcement 

concept, etc.) in combination with specific sheet-metal part geometry (length, width or height of a 

tooth, etc.). 𝑓(𝑥) represents a resulting process parameter as described above. However, since the 

manufacturability of each SBMF part is evaluated with at least two parameters, hence, the goal of 

deriving a design-for-manufacture design becomes a Pareto- or multi-objective optimization (MOOP) 

problem. A further challenge is the mixture of discrete and continuous attributes (set of 𝑥). While 

geometrical product characteristics (e.g. length, width, angles, etc.) can be set to values 𝑥 ∈ ℝ (e.g. 

1.5mm, 12.65mm, 65.3°) other attributes can only have discrete settings (e.g. extrusion oil A, B or C; 

1, 2 or 3 layers of reinforcements). These aspects have to be taken into account during the search for a 

suitable optimization approach. 
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2.2 SLASSY at a glance 

SLASSY is an engineering assistance system developed for the purpose of helping the product 

developer to design parts that are to be manufactured by sheet-bulk metal forming. The assistance is in 

accordance to the understanding of Weber (2005) of the design process that consists of iterations 

between the phases synthesizing and analysing. The synthesis step is supported by offering feature 

elements both for the primary design features (cups, plates, etc.) and the secondary design features 

(teeth, carriers, knurls, etc.) to the design engineer. The knowledge which is necessary for the analysis 

of a product regarding its manufacturability is acquired automatically and stored in SLASSY’s 

knowledge base. In summary, the development of SLASSY addresses the well–known challenge of 

knowledge acquisition in the field of expert systems. The term "self-learning" refers to the 

implemented Knowledge Discovery in Databases (KDD) process which uses data from the 

manufacturing process development (Röhner, 2011). After this KDD-process the knowledge is 

represented by means of linear or polynomial regression functions, M5P-regression trees or M5R-Rule 

learners (Witten, 2011). By means of statistical test methods SLASSY selects user-independently the 

metamodel (out of 24) which has the best data fit. In the current development stage SLASSY offers 

the design engineer assistance through a knowledge-based analysis (in accordance to Weber (2005)) of 

sheet-metal parts regarding manufacturing process related parameters. 

2.3 Metamodelling and Optimization in Engineering Design 

The development of computer technology constantly increases computing capacities and recent 

advances in quantum computers may offer much more potentials in the future. However, the high 

computational costs of virtual experiments (FEA, CFD, MBS, etc.) call for a more efficient solution 

when it comes to design optimizations that rely purely on computer-based system evaluation.  

A well-known and mature approach is the usage of mathematical models that map the system's 

behaviour and produce an output which shows a sufficient accuracy. Since the origin of such 

mathematical models is the simulation model itself they can be considered as a "model of the model" 

(Kleijen, 1986). Therefore, the term metamodel is often used, but further terms can be found in 

literature such as surrogate, reduced order, regression, approximation or response surface model. 

Metamodelling techniques have been utilized and constantly improved over the last decades. 

Overviews and applications can be found, inter alia, in Tomiyama et al. (1989), in Barton (1994), in 

Simpson et al. (1997), in Emmerich and Naujukos (2004) and in Pan et al. (2013). The issue of model 

fit estimation is discussed in detail by Jin et al. (2001). A metamodel can be used for different 

purposes, such as sensitivity analysis (Chen 2005), robust design (Sanchez, 2000) and design 

exploration (Ligetti and Simpson, 2005). Wang and Shan (2006) present a detailed review on different 

metamodeling approaches. To these works we will add this contribution with the focus on design-for-

manufacture in the context of sheep-bulk metal forming. 

In section 2.1 we derived the necessity for a multi-objective optimization approach to deal with the 

given problem of a knowledge-based synthesis of SBMF parts. Such optimizations are widely used in 

engineering design as Papalambros (2000) shows. A crucial step in design optimization is to model the 

system that is to be improved. Here one can make use of metamodels, too. They offer a drastic 

reduction of computational loads that accompany large, comprehensive or multi-domain models of a 

system. Metamodel-based optimization has been used, inter alia, by El-Beltagy and Keane (1999) for 

minimizing the energy level of an excited beam structure for a certain excitation frequenzy, by Sasena 

et al. (2000) to find a set of design variables for a midsized hybrid electric passenger car that 

minimizes the fuel consumption, by Jin et al. (2003) to show how metamodels can contribute to 

optimization problems with uncertain design parameters, by Hu et al. (2008) to increase the energy 

absorption in crash-relevant sheet-metal parts and by Kim et al. (2015) for deriving shapes of fan 

blades that emit less noise.  

3 METAMODEL-BASED OPTIMIZATION OF SHEET-BULK METAL FORMED 

PARTS 

We have shown that our objective of deriving a design-for-manufacture geometry of sheet-bulk metal 

formed parts can only be achieved via multi-objective optimization. A variety of optimization 

approaches and procedures are available for that purpose, see e.g. Papalambros (2000) and Nelson et 

al. (2001), however, there are some restrictions we have to take into account which will limit the scope 
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of usable algorithms. Beside the restriction/requirements that were described in the last paragraph of 

chapter 2.1 further aspects can be named. A single forming process simulation takes approximately not 

less than two days, including pre-processing, solving and post-processing (Schneider, 2011). Costs for 

a forming tool range from four- to five-digits (Euro) depending on the design. A metamodel-based 

approach is thereby inevitable. Furthermore, we have to consider the metamodels (objective functions) 

which are available in our project. These functions can show multiple local minima, non-continuity 

and/or discrete behaviour. While the manufacturing process is constantly improved over time the 

process engineers, of course, gain more and more experience. Those heuristics contain valuable 

knowledge that should be taken into account during the optimization.  

With these restrictions in mind we did extensive literature reviews and decided to focus on 

evolutionary algorithms (EA). EAs use the principles of biological evolution and involve 

(re)production of groups of individuals (population) via mutation, recombination (or crossover) and 

selection (Back, 1997). This procedure is repeated several times, whereas the population of each 

iteration is the generation. Furthermore, memetic algorithms as presented by Moscato (1989), a sub-

group of EAs, have gained our attention. Weicker (2007) explains that memetic algorithms combine 

population based algorithms and local search strategies to overcome the disadvantages of both. The 

former tend to research the design space in its whole width, however, they are very slow and need to 

create many generations to find the global optimum. On the other hand, local methods can move 

(evolve) quickly but tend to get trapped in a local optimum. The term memetic (or meme) originates 

from the field of behaviourism and describes the behavioural element of an individual that can be 

inherited but, in contrast to a gene, can be changed in every next generation, e.g. through imitation. 

The basic idea of most memetic algorithms is to optimize all evolutionary created individuals locally 

and only afterwards add them to the population, if they show a better behaviour than their predecessor.  

3.1 Deriving the fitness function 

An important step is the formulation of the objective or fitness function. This function can be 

understood as the formal (computer-interpretable) representation of the optimization problem. Each 

individual’s quality is evaluated by means of this fitness function to ensure comparability, whereas a 

single individual corresponds to a specific variant of a SBMF-part. As described in section 2.1 the 

term “manufacturable” means that part specific process parameters do not exceed upper and/or lower 

boundaries. These process parameters can be calculated via metamodels that are the result of the 

KDD-based self-learning process. The self-learning component of SLASSY (automatic acquisition 

tool) stores the metamodels by means of text-based representations that can only be interpreted by the 

inference machine of SLASSY. Since the optimization is carried out in the Matlab® environment the 

representation from SLASSY’s knowledge base have to be converted in an appropriate format 

(parsing). After that parsing at least one m-function is available that accepts an input vector x (product 

and/or process attributes) and returns a scalar value for a specific process parameter (e.g. 𝐹𝑓, φ or 𝑡∆). 

In case of a single-objective optimization this m-function can be easily processed by any optimization 

toolbox. The fitness function for a MOOP can be expressed as an aggregation function, a weighted 

sum of the different process parameter objectives. Another possibility is to create multiple m-functions 

for each process parameter and to hand them over to the evolutionary or memetic algorithm.  

3.2 Taking into account functional and further constraints  

A functional constraint in our context describes the consideration of a design features’s function 

during the optimization process. This function is ensured via a specific geometry. The teeth in Figure 1 

(lower left corner) are inspired by the teeth of a synchronizer ring from a drive train gear. They have to 

prevent the synchronizer ring from slipping back after it has matched the new gear ratio between 

drive-shaft and driven-shaft (details in Kuchle, 2010). Therefore the geometry of the teeth shows 

specific angles and geometrical proportions.  

Furthermore the manufacturing process data has to be taken into account. This data was elicited via 

parameter variation studies with upper and lower boundaries of the input parameters. The metamodels 

that are derived afterwards from the data (KDD-process) can predict the process parameters (e.g. 𝐹𝑓, φ 

or 𝑡∆) both for values that are beneath (interpolation) and above (extrapolation) those boundaries. 

However, extrapolation should be treated with caution, because predictions “outside” of the variation 

study range are not reliable.  
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Such constraints can be taken into account via different approaches (see Weicker, 2007 for details): 

restrictive methods will either reject invalid individuals immediately (so called “crib death”) or try to 

turn them into valid ones (repair strategy). Tolerant approaches will allow invalid individuals, 

however, those will be discriminated against the better ones during selection. The decoder approach 

chooses the coding in a way that a valid individual can always be assigned to each genotype. 

4 USE CASE AND EVALUATION 

In this use case a non-manufacturable design of a SMBF-part is chosen to be optimized. This design 

draft is created in SLASSY by synthesizing a primary design feature (deep-drawn cup) with secondary 

design features pattern (locking teeth). The default (initial) geometry is set as shown left in Figure 25. 

The self-learning process of SLASSY has acquired metamodels for the process parameters forming 

force 𝐹𝑓, total equivalent plastic strain φ and the contact ratio c. Each model is parsed into a Matlab 

processible format, whereas this operation has been automated via a short script we developed. The 

optimization objective is to maximize the contact ratio and minimize the forming force plastic strain. 

As a next step the constraints have to be derived. Figure 3 shows a sketch of the secondary design 

feature “locking tooth” with geometric characteristics (R0, R1, R2, H1, H0, L0, W0, A0), referred to 

as attributes and several constraints to ensure functionality. These attributes will be tuned during the 

optimization in order to find a design that is better with respect to manufacturability than the initial. 

Within the Matlab optimization toolbox environment the behaviour of the algorithms can be tuned 

inter alia by varying the numbers of generations and the size of each population. We tested several 

configurations and found that for the given example 800 generations with a population of 150 (black 

triangles in Figure 4) and 1200 generations with 400 individuals (grey rhombus in Figure 4) have 

shown the best results. Figure 4 shows a pareto chart of the forming force and the contact ratio with 

different optimization configurations. It can be seen that the mentioned configurations densify to what 

can be interpreted as a pareto front, whereas the remaining configurations are more loosely spread 

right of the pareto front.  

 

Figure 3: Constraints of the use case “locking tooth”. The constraints ensure both 
functionality of the SBMF-part and failure-free CAD-model creation. 

The result of a MOOP is a set of pareto-optimal points each of which represents a SBMF-part design 

that is optimal with respect to the process parameters 𝐹𝑓, φ and c and that meets the previously 

determined constraints. The design engineer can independently choose an individual from this set and 

transfer it to the synthesis tool of SLASSY in order to display this specific solution and discuss it with 

manufacturing experts. A complete automation and the output of a single optimization solution are not 

expedient, because the user loses the control over the assistance system and cannot comprehend its 

decisions. According to Stokes (2001) this is a major cause of failure for knowledge-based systems. 

The users tend to avoid dealing with the system and start to develop their own workarounds on the 

longterm. We developed the functions thinningPareto and explorePareto in Matlab to either reduce 

the size of the set or to search the individuals selectively. 
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Figure 4: Pareto chart of plastic strain and contact ratio with different optimization 
configurations (pop= size of population, gen= number of generations). 

The configuration that is represented by triangles and rhombus turned out to  
deliver good results in a short time (40s). 

Figure 5 shows an optimized individual with the values of the according attributes and the resulting 

process parameters. Both the forming force and the plastic strain have been reduced by 11% ( 𝐹𝑓) and 

37% (φ), however, the contact ratio increased by 10%.  

 

Figure 5: Initial and an optimized version of the locking teeth with according process 
parameters. Note, that there is mostly more than one pareto-optimal design. 

5 SUMMARY AND OUTLOOK 

This research is concerned with the problem of knowledge-based engineering of sheet-bulk metal 

formed parts. Sheet-bulk metal forming is a new manufacturing technology that offers potential for the 

design engineer, however, the design-relevant and manufacturing related knowledge has to be 

acquired and integrated into the product development in an early phase of process development. This 

is done by an automatic KDD-based self-learning process. The knowledge is formally represented by 

means of metamodels which have been used for the knowledge-based analysis of SBMF-parts. We 

showed that the goal of a knowledge-based synthesis corresponds to a multi-objective optimization 
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problem. MOOP has been used for many engineering design problems and can be achieved via 

different approaches. For this contribution we focussed on evolutionary and memetic algorithms 

which are available in toolboxes, e.g. in Matlab®. We extended such a toolbox to customize them for 

our purpose and to ease their usage. Beside the presented example we analysed different algorithms 

regarding their fit for our purposes. Table 1concludes our findings. 

Table 1: Comparison of evaluated algorithms with respect to the fulfilment of requirements 
regarding the optimization of our sheet-bulk metal formed parts. 

requirement 
memetic 

algorithm 

genetic 

algorithm 

genetic multi-

objective algorithm 

Multi-objective 

optimization 

with aggregation 

function 

with aggregation 

function 
yes 

Optimization with 

discrete attributes 
via fitness function yes yes 

Optimization under 

constraints 
yes yes yes 

approx. runtime (s) 1 0,5 40 

 

For a given SBMF-part design we started a multi-objective optimization process and derived a set of 

pareto-optimal designs that also met function related constraints. The presented example is 

straightforward and kept simple to ensure proof-of-concept and will be extended with further aspects 

in future works. Nevertheless, we set the basics for aspects like integration of manufacturing heuristics 

which result in local search strategies (memetics) during the optimization process. Since sheet-bulk 

metal forming is still in an early development stage, the process simulation models are extended by 

further aspects (e.g. friction models, material fatigue models, structured tool surfaces) step by step. 

This leads to continuous simulation studies being performed and continuous simulation data being 

created. From this data SLASSY will acquire metamodels which represent the “new” knowledge for a 

specific SBMF-part. Eventually SLASSY tackles the well-known bottleneck of knowledge acquisition 

within the development of knowledge-based systems as described in Hayes-Roth (1983). 
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